Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Doubly Connected Edge List (DCEL) is an edge-list structure widely used in spatial applications, primarily for planar topological and geometric computations. However, it is also applicable to various types of data, including 3D models and geographic data. An essential operation is theoverlay operation, which combines the DCELs of two input polygon layers and can easily support spatial queries on polygons like the intersection, union, and difference between these layers. However, existing techniques for spatial overlay operations suffer from two main limitations. First, they fail to handle many large datasets practically used in real applications. Second, they cannot handle arbitrary spatial lines that practically form polygons, e.g., city blocks, but they are given as a set of scattered lines. This work proposes a distributed and scalable way to compute the overlay operation and its related supported queries. Our operations also support arbitrary spatial lines through a scalable polygonization process. We address the issues of efficiently distributing the lines and overlay operators and offer various optimizations that improve performance. Our experiments demonstrate that the proposed scalable solution can efficiently compute the overlay of large real datasets.more » « lessFree, publicly-accessible full text available July 1, 2026
-
This paper demonstratesPynapple-G, an open-source library for scalable spatial grouping queries based on Apache Sedona (formerly known as GeoSpark). We demonstrate two modules, namely,SGPACandDDCEL, that support grouping points, grouping lines, and polygon overlays. TheSGPACmodule provides a large-scale grouping of spatial points by highly complex polygon boundaries. The grouping results aggregate the number of spatial points within the boundaries of each polygon. TheDDCELmodule provides the first parallelized algorithm to group spatial lines into a DCEL data structure and discovers planar polygons from scattered line segments. Exploiting the scalable DCEL, we support scalable overlay operations over multiple polygon layers to compute the layers' intersection, union, or difference. To showcasePyneapple-G, we have developed a frontend web application that enables users to interact with these modules, select their data layers or data points, and view results on an interactive map. We also provide interactive notebooks demonstrating the superiority and simplicity ofPyneapple-Gto help social scientists and developers explore its full potential.more » « less
-
ABSTRACT The Doubly Connected Edge List (DCEL) is an edge-list structure that has been widely utilized in spatial applications for planar topological computations. An important operation is the overlay which combines the DCELs of two input layers and can easily support spatial queries like the intersection, union and difference between these layers. However, existing sequential implementations for computing the overlay do not scale and fail to complete for large datasets (for example the US census tracks). In this paper we propose a distributed and scalable way to compute the overlay operation and its related supported queries. We address the issues involved in efficiently distributing the overlay operator and over various optimizations that improve performance. Our scalable solution can compute the overlay of very large real datasets (32M edges) in few minutes.more » « less
An official website of the United States government
